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The nonstationary normal displacements and the surface temperature of an elastic half-space heated in a 

circular region by a constant-power heat f lux are evaluated. 

Determination of the thermal distortion of surface profiles enters the analysis of contact problems of 

thermoelasticity, in particular, when heat is generated in the region where the bodies come into contact. Stresses 

and displacements in an elastic half-space with anarbitrary stationary temperature distribution are evaluated in 

some works, e.g., [1 ]. However, the change in the contact pressure and the contact area upon heat generation due 

to friction is a highly nonstationary process [2 ]. It is known that the solution of the equations of nonstationary 

heat distribution for a semi-infinite body may be represented as a double integral over space and time variables. 

Discretization of this representation by numerical methods, in particular by the method of finite elements, requires 

the construction of the corresponding Green's functions. The present work is devoted to investigating precisely this 

problem under the assumption of a constant distribution of heat fluxes in some small circular region on the half- 

space surface. 

Instantaneous Sources. We will determine normal displacements of the surface of the elastic half-space z 

> 0 heated by a constant-power heat flux q instantaneously applied to it at the point O at the time t = O. Hereinafter 

we assume that the initial temperature of the semi-infinite body is zero and the surface z --- 0 outside the heating 

region is heat-insulated. At t > 0 at the distance r -- ~ + y2 from the point O we have [3 ] 
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Temperature field (1) gives rise to a stress-strain state whose components in the spherical system of coordinates 

r, 0, ~o are equal to [4 ]: 
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The shear stresses aO~,, ar~ and the displacements u0 are equal to zero as a consequence of the loading symmetry. 

Solution (2) corresponds to the case where the surface z -- 0 remains two-dimensional due to the action 

of the stresses cr~ applied to it. We obtain a solution for the half-space z > 0 with a stress-free boundary by 

applying to the latter opposite, in sign, forces equal to %~, from (2). Using the Boussinesq solution for a concentrated 

force acting at a boundary point of the half-space [4 ], we determine the normal displacements of the surface z -- 
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To calculate the degenerate hypergeometric function q~(3/2, 2; - R  2) for R _< 1, we use the power series 

[5] 
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and for R > 1 the asymptotics [6 ] 

( 3  _ ) ___ ~ 4 i .(R2) i+l , 
~ ,  2 ;  R 2 1 (2i + 1) !! (2i - 1) !! 

v ~ R  i=0 i T 
(5) 

herein ( -1 )  !I = 1. Moreover, in [7] it is shown that 
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Let instantaneous sources with the power qsdO be situated on a circle of radius s in the plane z = 0 and 

act at t = 0. Then at t > 0 at a point of the surface of the half-space at the distance r from the center of the circle, 

on the basis of (3) we have 

uz (r, t) = qO ~V-U7 s r  I (R,  S) ,  

~ I ( R , S ) - ~  o 

With account for (4), for the function ~1 (R, S) we have the expansion 
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It is noteworthy that �9 1 (R, S) -- O 1 (S, R) and �9 1 (0, S) = 0(3 /2 ,  2; - $ 2 ) .  The corresponding values of the surface 

temperature are presented in [3 ]. 
We assume that on a disk of radius a in the plane z = 0 the heat :ra2q is instantaneously generated at the 

moment t = 0. The thermal distortion of the initially plane surface z -- 0 of the half-space with account for (6) is 

equal to 

U z (r, t) = q$kA202 (R,  A),  (8)  
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Substituting into (8) expansion (7) of the function O1 (R, S) in a power series, we arrive at 

�9 2 ( R ,  A ) = 2  ~ (2 i+  1 ) ! ! ( - A 2 )  i i 
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O 2 ( R , A ) = 2  ~ ( 2 i + 1 ) ! ! ( - R 2 )  i i=o (2i + 2) [ [ i l  (C~)2 (R/A)2] j=O ( j+  1) ' R > A .  

We note that O 2 ( R  , 0) = O ( 3 / 2 ,  2; -R2) ,  while at the center of the heated disk we have 0(0 ,  A) --- 0 ( 3 / 2 ,  2; 
-A2). The temperature of the boundary points of the surface of the half-space i s determined by using formulas 
from [3 ]. 

Continuous Sources. We determine the displacements and temperature of the surface z = 0 for a point 
source continuously acting on it by integrating corresponding equations (3) and (1) for an instantaneous source 
over time. We have 

c5 7 (  3 $2) dS (9) 
u z (r ,  t) = - q ~ O  3(R) ,  �9 3 ( R ) = - -  �9 ~ ,  2; - S ' 

0 

q 
T (r, t) - 2 ~ c r  erfc (R). 

With account for expansion (4), for the function O3(R) we may write 
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At large (> 1) values of R, from (9) and (5) we have 

(10) 

(11) 

�9 3(R)-~ 1 ~ (2 i+  1 ) ] ! ( 2 i -  1) H (12) 
v~  R i=O (2i + 3) 4 i i ! (R2) i+1 " 

565 



If the heat supply to the half-space is accomplished over a thin circular ring of radius s, then the distortion 
of the surface z -- 0 of the semi-infinite body, according to (9), is 

Uz (r ,  t) = - q~2 ~ Sr (R,  S) ,  

2x 
1 (13) r  S) ~ - ~  f r ( ~ /Rx-  2RS cosO + S 2) dO. 

0 

Integrating relation (10), we obtain the temperature distribution over the surface z = 0 of the half-space: 

qS 
T (r, t) = - ~  r (R, S), 
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Taking into account (11), we obtain for the functions r r  for R _< S 

"" j -0  
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and for R > S 

r  (R,  S) = In (R/2)  + (1 + y)/2 + 
i=l 

r  (R,  S) = K 

From formulas (15), (16) it follows that 

r (R, 0) = r (0, R) = r (R), 

(2i--1) '! (-R2)i ~ (Cfi)2 ( ~ )  2j 
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c s  ( a ,  o) = Cs (0, R) = erfc (R)/R. 

Let a continuous constant-power heat source q in form of a disk of radius a begins to act in the plane z = 

0 at the moment t = 0. Then at t > 0, integrating (13), (14) over the radial coordinate, we arrive at 

u z (r, 0 = - q 6A22kt r  (R,  A) ,  

2 A 2 
r A) =- --~ f r  S) SdS, r  A) - 

0 

.2 2 
T ( r ,  t) = q A  ~ r  A),  

f Cs (R, S) SdS. (17) 
0 

(18) 

The formulas for calculating the functions r  and r are obtained from (17), (18) and (15), (16). For R < A we 

have 

~6 (R,  A) = In (A/2) + (y + RX/A2)/2 + 
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From relations (19), (20) it follows that 

(I) 6 (R,  0) = tI) 3 (R), *7 (R, 0) = erfc (R) / (2R) ,  

*6 (0, A) = In (A/2) + y /2  + 
(2i - 1) [! ( -  A2) i 
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It is seen that as A --, o, the function *6(0, A) grows without bound. Therefore, at large values of A we determine 
the asymptotics of the function *6(0, A). Since 

2 A 2 A 
*6  (0 ,  A) - --~ f *4 (0, s) SdS = -~ f *a (S) SdS 

o o 

and 

7 "3 (S) SdS = - Jr, 
0 

then 

2at 2 7 *a (S) SdS.  (21) 
" 6 ( 0 ,  A) = A2 A 2 A 

Using asymptotic expansion (5) of the function *3(R), we find from (21) 

N ((2 i -  1)!!)2 
" 6 ( 0 ,  A)--- -~22 + 2 X 4i A2/+3 �9 
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Fig. 1. ~ 6vs r / a  for a = 0.25 (1), 0.5 (2), and 1 (3). 

Fig. 2. �9 7 vs r / a  for a = 0.25 (1), 0.5 (2), and 1 (3). 

Figure 1 presents the dependence of O6(R, A) and Fig. 2 that of t~7(R , A) on the ratio r / a  for three values 

of the radius a of the circular heating region. Calculations were made using formulas ( 1 9 ) - ( 2 1 ) .  

Application. Employing fundamental  solutions (1) and (3) for an instantaneous point source, we may 

represent the thermal  distortion and temperature of the surface z = 0 of the semi-space due to the action of heat 

sources distributed on it with density q(s,  t), s < a(t) ,  t > 0 as 

= f q ( s ,  7) �9 2 " -  r - 2rs cos 0 + sdOdsdT; 
u z ( r ,  t) -~n o o o ' ' 4 k ( t - r )  ~'Z-~)  , 

(22) 

2 s 2 ) r - 2 r s c o s O +  
exp - 4k (t - 7;) (23) t a.~) 

1 f f q ( s ,  7;) X sdOdsdr 
r ( r ,  t ) = 4 p c ( ~ k )  ~ o o o ( t - 7 ; ) ~  " 

We now subdivide the interval [0, t] into l parts of length &- = t / l :  0 = r o < 7;1 < . . .  < 7l-1 < 7;1 = t. On 

[0, a(r)  ] we i n t r oduce  the  un i form grid 0 = a0 < al < . . .  < an-1 < an = a ( r ) ,  a i = ias, i = O, 1 . . . . .  n; 

as  = a(7;)/n. Let r k = ak - c5s/2, k = 1, 2 . . . .  , n; t I = r I - & / 2 .  Assuming the function q(s,  3) to be constant on 

each space-time interval [at, ai+ 1 ] • [Tj, 7;~1 ], we find from (19) - (22 )  

6 n l (24) 
uz (rk , tl) ~ ~'~ E ~ qij cqkl , 

i=I ]=1 

Here 

t (2s) 2 • s qijdijkl  r (r,, tt) -- ~o----S i=1 j=~ 

^ 2 2 
Cijkl = -- t 1 [All O6 (R1 , Al l )  - A12 O6 (R1 , A12) ] + 

^ 2 2 
+ t 2 [A21 �9 6 ( R  2,  A21 ) - A 2 2 0  6 (R  2,  A22 ) ] ,  j ~  l ,  
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^ 2 2 
Cilkl = t2 [A21 ~6 (R2, A21) - A22 cP6 (R2, A22) ],  j = l 

2 2 
dijkl = - ~ [All tYP 7 (R 1 , All) - A12qb7 (R 1 , A12) ] + 

2 2 
+ k V ~  2 [A214P 7(R2,  A21 ) - A 2 2 d p  7(R2,  A22 ) 1, j # l ,  

2 2 
dilkl = [A21 (I) 7 (R2,  A2t ) - A22 qb 7 (R 2 , A22 ) ] ,  j = l 

rk ai a t -  1 
Rp = , , - -  --------~" Apl -- ~ Ap2 - ^ , 

2 ~/ktp 2 ~/ktp 2 ~/ktp 
p = l , 2 ,  

t 1 = (l - j - 1/2) 6z,  t 2 = (l - j + 1/2) c3v, qiy =- q (ri ,  Tj).  

Relations (24), (25) allow determination of the normal displacements and the temperature of the boundary 

points of the half-space by using a known law of heat flux distribution q(s, t), s <_ a(t), t > 0. If the function q(s, 

t) is unknown a priori, as is the case in the majority of contact problems of thermoelasticity, then formulas (24), 

(25) yield a system of linear algebraic equations for determinating the values of q(s, t) at the discrete points ri, i 

---- 1, ..., n, T], j = 1 . . . . .  l. The radius of the heating region a(~) may be both fixed and changing with time. To 

determine it, additional physical conditions are employed, namely, the condition of boundedness the contact 

pressure at the extreme points of the contact region, the absence of interpenetration of the materials of the 

contacting bodies outside the contact zone, etc. 

Finally, it should be noted that the approximating properties of an approximation with the aid of piecewise- 

constant functions are investigated in [8 ]. 

N O T A T I O N  

T, temperature; t, time; p, density; c, specific heat; k, thermal diffusivity; a, coefficient of linear thermal 

expansion; E, Young's modulus; v, Poisson coefficient; eft(*), error function; erfc(*), complementary error 

function; or, stress; u, displacement; I0(*), 11 (*), modified Bessel functions of the first kind; ~, Euler constant; 

K(*), E(*), total elliptic integrals of the first and second kind, respectively. 
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